Mechanical Forces Accelerate Collagen Digestion by Bacterial Collagenase in Lung Tissue Strips
نویسندگان
چکیده
Most tissues in the body are under mechanical tension, and while enzymes mediate many cellular and extracellular processes, the effects of mechanical forces on enzyme reactions in the native extracellular matrix (ECM) are not fully understood. We hypothesized that physiological levels of mechanical forces are capable of modifying the activity of collagenase, a key remodeling enzyme of the ECM. To test this, lung tissue Young's modulus and a nonlinearity index characterizing the shape of the stress-strain curve were measured in the presence of bacterial collagenase under static uniaxial strain of 0, 20, 40, and 80%, as well as during cyclic mechanical loading with strain amplitudes of ±10 or ±20% superimposed on 40% static strain, and frequencies of 0.1 or 1 Hz. Confocal and electron microscopy was used to determine and quantify changes in ECM structure. Generally, mechanical loading increased the effects of enzyme activity characterized by an irreversible decline in stiffness and tissue deterioration seen on both confocal and electron microscopic images. However, a static strain of 20% provided protection against digestion compared to both higher and lower strains. The decline in stiffness during digestion positively correlated with the increase in equivalent alveolar diameters and negatively correlated with the nonlinearity index. These results suggest that the decline in stiffness results from rupture of collagen followed by load transfer and subsequent rupture of alveolar walls. This study may provide new understanding of the role of collagen degradation in general tissue remodeling and disease progression.
منابع مشابه
Effects of collagenase and elastase on the mechanical properties of lung tissue strips.
The dynamic stiffness (H), damping coefficient (G), and harmonic distortion (k(d)) characterizing tissue nonlinearity of lung parenchymal strips from guinea pigs were assessed before and after treatment with elastase or collagenase between 0.1 and 3.74 Hz. After digestion, data were obtained both at the same mean length and at the same mean force of the strip as before digestion. At the same me...
متن کاملGranulocyte collagenase: selective digestion of type I relative to type III collagen.
Collagenases produced by human polymorphonuclear leukocytes, human lung fibroblasts, and rabbit pulmonary alveolar macrophages were compared in their ability to digest soluble native type I and type III collagens. While the fibroblast and macrophage collagenases attacked the two substrates at approximately equal rates, the leukocyte collagenase attacked type I collagen preferentially (15:1) in ...
متن کاملAcidic fibroblast growth factor induces an antifibrogenic phenotype in human lung fibroblasts.
Acidic fibroblast growth factor (FGF-1), a prototype member of the heparin-binding growth factor family, influences proliferation, differentiation, and protein synthesis in different cell types. However, its possible role on lung extracellular matrix (ECM) metabolism has not been evaluated. In this study we examined the effects of FGF-1 and FGF-1 plus heparin on type I collagen, collagen-bindin...
متن کاملEffects of enzymatic treatments on the depth-dependent viscoelastic shear properties of articular cartilage.
Osteoarthritis (OA) is a disease that involves the erosion and structural weakening of articular cartilage. OA is characterized by the degradation of collagen and proteoglycans in the extracellular matrix (ECM), particularly at the articular surface by proteinases including matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs).(1) Degradat...
متن کاملNereis cuticle collagen. Isolation and properties of a large fragment resistant to proteolysis by bacterial collagenase.
Native cuticle collagen, obtained from Nereis virens, was incubated with purified bacterial collagenase (EC 3.4.4.19). The kinetics of proteolysis were monitored by viscometry, in parallel with similar digestions of calf skin collagen. Comparison of the kinetics of digestion of the two collagens, at similar enzyme to substrate ratios (w/w), showed that the native cuticle collagen was relatively...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016